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Abstract
Type checkers are the most commonly used form of static

analysis, but their design is coupled to the rest of the lan-

guage, making it hard or impossible to bring new kinds

of reasoning to existing, unmodified code. We propose a

novel approach to checking advanced type invariants and

properties in unmodified source code, while approaching

the speed and ease of simple, syntax directed type checkers.

The insight is that by combining a deep program analysis

(symbolic execution) with a cheaper program abstraction

(based on program slicing), it appears possible to reconsti-

tute type-checking in the context of an underapproximate
analysis. When the program’s ‘type level’ can be opportunis-

tically disentangled from the ‘value level’, this is done by

the program abstraction step, in some cases removing the

underapproximation. We implement a simple prototype that

demonstrates this idea by checking the safety of generic

pointers in C, pointing to benefits such as safe homogeneous

and heterogeneous generic data structures.

CCS Concepts: • Software and its engineering → Soft-
ware safety; Polymorphism; Model checking; • Theory of
computation → Program analysis; Abstraction; Invari-
ants; Assertions.

Keywords: static analysis, type checking, symbolic execu-

tion, program slicing
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1 Introduction
Simple syntax-directed type-checkers are arguably the most

successful family of static analyses in existence. However,

as traditionally conceived they are also limited in applica-

bility and limiting to programmers. In applicability, they

are limited to a carefully constrained correctness property

that is coupled tightly to a wider language design. For pro-

grammers, they bring the reality of compromising their code

for the sake of pleasing the checker: either factoring their

code in less-than-ideal ways (e.g. by duplication), or by us-

ing features that circumvent checking, such as casts that are

checked only dynamically or not at all. Research on more ad-

vanced type systems has generally progressed by co-design

with newer languages, in which type-checking involves a

deeper analysis (often flow-sensitive) but is designed to be

efficient and sound. In this paper we describe ongoing work

towards a radically different approach, which retains the

core benefits of type-checking but without disrupting ex-

isting language designs, and offering new trade-offs in the

areas of code factoring and check circumvention.

The core idea is to start with a very deep analysis—symbolic

execution—and ask how to recover the efficiency and sound-

ness of conventional type checking, for those programs that
are syntactically amenable to it (so would pass a conventional

check), while also still providing value for programs that are

not so amenable. The latter are cases where code is more

‘gnarly’, perhaps owing to casts or to code structure that

defeats a traditional checker. Our analysis can still proceed

usefully on these—albeit perhaps more slowly and/or with

loss of a soundness guarantee (since the symbolic execution

is underapproximate).

Our contributions are the following.

• We introduce an alternative formulation of static type

checking as symbolically executing an instrumented

program. The instrumentation adds ‘type assertions’

(§3), systematically, according to an invariant protocol.
• We outline a program abstraction (§4), based on pro-

gram slicing [28], to recover performance and (in some

cases) termination. We also sketch how to generalise

the invariant protocol to cover Hindley-Milner-style

polymorphism.

• Lastly we present a prototype (§5) based on Klee that

checks the safety of casts in C. It demonstrates the

feasibility of the approach and motivates further im-

provements to the program abstraction.

https://doi.org/10.1145/3427764.3428324
https://doi.org/10.1145/3427764.3428324
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2 Motivation
Consider C and Java: two widely-used languages for building

highly dependable, long-lived systems. Both perform simple,

syntax-directed static type checking, which developers ‘opt

out of’ in at least the following ways.

• in C, parametrically polymorphic data structures are

expressed using void * and unchecked downcasts;

• in C, extensibility frequently involves void * and

casting (e.g. when registering callbacks, or decorating

library-defined structures with client-specific data);

• in Java, some older code also uses downcasts from

Object, as does much reflective code;

• in C, algebraic data types are simulated using unchecked

union;
• in Java, idioms for simulating pattern-matching often

use ‘type case’ constructs performing downcasts.

Mastrangelo et al. [19] surveyed different uses of casts in

Java, finding that 8.7% of methods contain casts, of which

50% of which are not locally protected against errors. Poly-

morphism in C code has been studied by Hackett and Aiken

[10] and is especially prevalent in systems code. In C, casts

are particularly dangerous because there is usually no check

at all, even at run time. In our work so far, we focus on C,

although our technique is by no means specific to C.

Although one could imagine extending the type-checking

in Java or and C to cover most of the patterns above, do-

ing so would need to elicit additional information from the

programmer, hence create a need to extend the language.

Such an approach was taken, for example, in CCured [20],

Cyclone [12] and Checked C [22] projects. We instead seek

an analysis that is able to check statically the safety of casts

without modification of the language syntax or addition of

annotations. Such an analysis must (somehow) track the

‘real’ run-time type behind any value having a generic type

like void * (or Object). In general, this may depend on

program flow—for example, the run-time type behind a void
* function parameter may in extremis be different for every
distinct program path reaching that function. This means we

need a whole-program, path-sensitive analysis if our check-

ing is to be complete. For this we use symbolic execution

[4, 6, 17]. Modern symbolic executors such as Klee [5] per-

form object-level modelling of memory, and this model is

naturally amenable to extension with per-object type infor-

mation.

Program Slicing. To combat the poor scalability and un-

derapproximation of symbolic execution, we investigate pro-
gram slicing [28] as a program abstraction technique. Slic-

ing ‘reduces’ programs by removing ‘uninteresting’ parts,

according to a defined criterion—often a program location

and a set of variables defined at that location. The slicer

will follow data and control flow dependencies backwards

from these variables, and transitively preserve anything that

might influence them; everything else is discarded.
1
Usually

slicing uses fast, syntax-driven algorithms that are overap-

proximate, although a variety of algorithms are available

[27]; computing the smallest slice in general is undecidable.

How much of the original program is discarded depends

on the complexity of the dependency structure leading to the

sliced-on expressions. In our case, we are interested in the

‘real’ run-time type behind a generic pointer, but we often do

not need the data stored behind the pointer. The slicer can

thus discard much of the ‘work’ of the program, leaving only

what influences the type of data found or used in a generic

structure. We expect that straightforward code, which rarely

modifies types, should be mostly discarded by the slicer, pro-

ducing a small program which is fast to symbolically execute.

’Gnarly’ parts, perhaps featuring lots of casts, generic point-

ers, and so on, will leave a larger program behind, hence

create more work for the more expensive analysis. In this

sense we target a ‘pay-as-you-go’ property.

3 Finding Type Errors by Symbolic
Execution

Consider the following linked-list code.

1 struct list {
2 void *p;
3 struct list *next;
4 };
5 int f(struct list *l) {
6 int max = -1;
7 while (l) {
8 int i = *(( int*)l->p);
9 max = i > max ? i : max;
10 l = l->next;
11 }
12 return max;
13 }

To allow symbolic execution to find failures of the pointer

cast, we augment the engine to carry type information for

every object. This allows us to instrument the program with

type assertions, which the symbolic execution engine can

check much like any other assertion. This instrumentation is

done systematically; systematic insertion of assertions and

assumptions is sometimes called an invariant protocol [26].

The following is an illustration (not concretely reflective of

our implementation).

1 int f(struct list *l) {
2 Type _type_at_l =_type_list; / / f rom p r o t o t y p e
3 int max = -1;
4

5 while (l) {
6 assert(type_at(l->p) / / r e q u i r e d
7 == _type_int ); / / b e f o r e c a s t
8 int i = *(( int*)l->p);
9 max = i > max ? i : max;
10 assume(type_at(l->next) / / c o n s e q u e n c e o f
11 == _type_list / / i n v a r i a n t s on l
12 || type_at(l->next) / / and f i e l d ' n ex t '
13 == _type_None );

1
Formally the slicer will ensure that the output program behaves the same

as the input program with respect to the slicing criterion. This means that

during any execution the values of the selected variables, at the selected

locations, would be the same in both programs.
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14 l = l->next;
15 _type_at_l = / / c o n s e q u e n c e o f
16 type_at(l->next); / / a s s i g nmen t
17 assert(_type_at_l
18 == _type_list / / r e q u i r e d a f t e r
19 || _type_at_l / / a s s i g nmen t t o l
20 == _type_None ); / / ( p r e s e r v e i n v a r i a n t )
21 }
22 return max;
23 }

Such an approach can allow us to find bad downcasts

ahead of time. This is already useful, since a conventional

type-checker will not find such bugs. However, it is not yet

a substitute for a conventional type checking, because it is

both slow and does not terminate for certain programs.

4 Slicing as a Program Abstraction
To recover something performing comparably to type-checking

we could try to combine it with the right program abstraction.
Unlike conventional checkers, which require all programs

to pass the check, our goal is to recover the scalability of

syntax-directed checking on those programs that allow it,
but still permit analysis of other code that is too gnarly for

a traditional checker to reason about. Similar to previous

work [23, 25] we rely on program slicing [28] to simplify

the program ahead of symbolic execution. Since types exist
‘at the meta level’, and the value-level computation only in-
frequently makes choices influencing those types, we might

expect to slice away most of the computation and be left

with a ‘types-only program’, i.e. the type assertions and rei-

fied types with which we augmented the program. For syn-

tactically type-checkable programs, types are by definition

straightforwardly separable from ‘value-level’ computation;

for example, types are invariant around a loop. The ability to

eliminate loops in our technique is highly desirable, because

loops are a frequent source of non-termination for symbolic

execution.

4.1 Reformulating Type-Checking
Our experience so far suggests that given the right approach

to augmentation, and a specially crafted slicer, we can refor-

mulate conventional type-checking in at least some cases

as symbolically executing a loop-free program that was pro-

duced by slicing. To illustrate, consider a simpler, monomor-

phic version of the program. Since it does not have the prob-

lematic cast, it should be straightforward to check statically.

(Note that our earlier example is intentionally not checkable
by a simple Java-style type checker: the downcast is left for

dynamic checking, and indeed it is possible to construct a

heterogeneous list that would cause a type error at run time.)

1 struct list {
2 int *n; / / Now no t d e c l a r e d as v o i d ∗
3 struct list *next;
4 };
5

6 int f(struct list *l) {
7 int max = -1;
8 while (l) {
9 int i = *l->n;

10 max = i > max ? i : max;
11 l = l->next;
12 }
13 return max;
14 }

After augmentation with reified types and assertions, this

becomes the following.

1 int f(struct list *l) {
2 Type _type_at_l =_type_list; / / f rom p r o t o t y p e
3

4 while (l) {
5 int i = *l->n;
6 max = i > max ? i : max;
7 assume(type_at(l->next) / / c o n s e q u e n c e o f
8 == _type_list / / i n v a r i a n t s on l
9 || type_at(l->next) / / and f i e l d ' n ex t '
10 == _type_None );
11 _type_at_l = / / c o n s e q u e n c e o f
12 type_at(l->next); / / a s s i g nmen t
13 l = l->next;
14 assert(_type_at_l
15 == _type_list / / r e q u i r e d a f t e r
16 || _type_at_l / / a s s i g nmen t t o l
17 == _type_None ); / / ( p r e s e r v e i n v a r i a n t )
18 }
19 return max;
20 }

Using purely local reasoning we can deduce that

_type_at_l is always _type_list. Furthermore the assump-

tion bounds type_at(l->next) to either _type_list or

_type_None. This lets us rewrite the program as follows.

1 void f(struct list *l) {
2 assume(_type_at_l / / c o n s e q u e n c e o f
3 == _type_list ); / / f u n c t i o n p r o t o t y p e
4

5 while (nondet ()) {
6 int i = *l->n; / / SLICED
7 max = i > max ? i : max; / / SLICED
8 assume(type_at(l->next) / / c o n s e q u e n c e o f
9 == _type_list / / i n v a r i a n t s on l
10 || type_at(l->next) / / and f i e l d ' n ex t '
11 == _type_None );
12 l = l->next; / / SLICED
13 _type_at_l = nondet( / / c o n s e q u e n c e o f
14 _type_list , _type_None ); / / a s s i g nmen t
15 assert(_type_at_l
16 == _type_list / / r e q u i r e d a f t e r
17 || _type_at_l / / a s s i g nmen t t o l
18 == _type_None ); / / ( p r e s e r v e i n v a r i a n t )
19 }
20 }

It is now apparent that lines 6, 7 and 12 do not affect

the types, and can be removed. After that, the loop body

of this program is trivially invariant: _type_at_l is either
_type_list or _type_None, before and after the loop. Since
this is exactly the property being asserted, both assertion

and loop can also be removed prior to symbolic execution.

Clearly this is not an off-the-shelf slicer, but rather one

which also performs certain elementary program abstrac-

tions, extending the slicer’s usual local reasoning. In this

example we abstracted a type-level assignment into nonde-

terministic choice (line 12; contrast line 13 in the previous

listing), exploiting the bound established by a previous as-

sumption. This is an overapproximation which, in case of

amenable code, such as in this example, allows more code to

be sliced away. This is analogous with existing amorphous
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slicing techniques [11]. Clearly our approach also relies on

careful design of the augmentation with reified types—we

make use of the modelling of null pointers as the distinct

_type_None—and of the invariant protocol for adding the

assertions. The protocol defines a set of rules for when an

invariant must be checked, and when (as a consequence) it

may be assumed. Again, the invariant and its protocol must

be designed carefully—here we use a simple ‘assume on read,

check on write’ protocol for pointed-to types. This allows

us to assume soundly that on reading a pointer-to-list, we
always obtain null or the address of a list, in return for

always asserting the equivalent property on writing.

4.2 Polymorphism
This seems like a lot of effort to reformulate a very pedestrian

check over monomorphic code, which is already handled

by even basic type-checkers. The value of this approach

is in its potential for extensibility: by tweaking individual

parts of this pipeline, we can accommodate different disci-

plines and their invariants. We will sketch how to extend

the approach to handle Hindley-Milner-style polymorphism,

revisiting our opening example. The idea is to strengthen the

invariant to include a ‘type-homogeneity’ property across

the various generic pointers in the list, making the corre-

sponding changes to the invariant protocol. The example

now uses a generic pointer (void*) and shows only newly

added instrumentation, for brevity.

1 struct list {
2 void *n; / / back t o g e n e r i c v o i d ∗
3 struct list* next;
4 }
5

6 int g() {
7 struct list *l = / ∗ pseudo − s yn t a x ∗ / [&1, &2, &3];
8 / / . n f i e l d p o i n t s t o i n t , a s u b t y p e o f v o i d
9 Type _type_at_l_n = _type_int; / / f rom a s s i g nmen t
10

11 while (l) {
12 assume(type_at(l->n) / / homogene i t y a s sump t i on
13 == _type_at_l_n ); / / ( c h e c k e d a t
14 / / l i s t c o n s t r u c t i o n )
15 assert(_type_at_l_n == _type_int ); / / r e q u i r e d by
16 int i = *(int*)l->n; / / <− downca s t
17 max = i > max ? i : max;
18

19 l = l->next;
20 assert(type_at(l) == _type_None / / p r e s e r v e
21 || type_at(l) == _type_list ); / / i n v a r i a n t on l
22 }
23 return max;
24 }

Here the loop expects the type _type_int but the list

declaration only guarantees the more general void, so our
original invariant protocol’s assumption is not enough to

remove the assertion (and hence the loop) at slicing time.

However the new assumption in line 12 tells us that the type

of the pointer field n is the same for every node in the list.

List construction, although not shown, is correspondingly

instrumented to assert this. This in turn allows the downcast

check to be eliminated, provided that the slicer can reason

one iteration backward around the loop back-edge (e.g. by

unrolling the loop once), to see that either the assumption

on line 15, before the loop, implies the asserted property or

the previous iteration’s assumption does.

The above example provides a very minimalist illustration

of a homogeneity assumption, and further development is

needed to make it a realistic polymorphic example. First we

would refactor it into a polymorphic function containing

the loop, separate from the monomorphic invocation on an

int list. This would require passing a compar callback,

responsible for the downcast, rather than the current loop’s

direct use of > and (int*). In turn, this gives us an inter-

procedural and higher-order example: to make the callback

invocation itself sliceable requires some form of summary

of its type-correctness precondition, suitable for assertion-

checking in terms of _type_at_l_n. Again, such a check

would occur outside the loop, at the call which passes the
callback, much as a Hindley-Milner-style checker would

check the use of an int -> int function being passed into a

polymorphic ’a -> ’a context. Further work is needed, in-

cluding extending our reified type information with function

summaries of this kind.

4.3 Directions
We believe unpacking type-checking into this combination

of augmentation, invariant protocol and slicing algorithm,

may be fruitful in several ways.

Configurability. It opens up type-correctness properties
to a spectrum of analysis methods that is potentially config-

urable in the sense of Beyer et al. [2], from fast-but-shallow

to slow-but-deep. Ultimately this provides more means of

catching errors statically, rather than deferring checks until

run time (Java-style) or skipping them altogether (C-style),

without redesigning the whole language. It also allows anal-

ysis methods to be chosen according to other advantages;

for example, symbolic execution, although slow (on unab-

stracted code), provides precise counterexamples, which pro-

grammers may prefer to type-checkers’ sometimes obscure

error messages.

Language-Neutrality. The use of invariants allows us

to explore the design space of type-checking across lan-

guage boundaries. For example, what if variable declared as

a pointer-to-list could no longer be relied on to be either

null or point to a list? This sort of situation arises in cross-

language scenarios (imagine sharing our list with Python

code, say), since different languages may preserve a different

invariant (in Python’s case, any reference is fair game to

point to any object). Given a different invariant protocol,

checking may still be tractable (say, checking on loads rather

than on stores), or the code in the ‘more relaxed’ language

code may be instrumentable with assertions that effectively

‘tighten’ it to the other language’s invariant, perhaps at a

cost in flexibility.
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Generalisability. Extending our invariant protocol to-

wards Hindley-Milner-style polymorphism raises the ques-

tion of whether this extends to other ‘fancy’ type systems.

Dependent types [7, 29] and linear types [1, 18], for instance,

have been shown to have a number of benefits for low-

level programming, but are found in few mainstream pro-

gramming languages. These require flow sensitive checking,

which symbolic execution already provides.

Application-Friendliness. It suggests a path by which

application-level invariants can enhance or accelerate static

checking, by being incorporated into the protocol. Subse-

quent analysis steps, including slicing and symbolic execu-

tion, need not be limited to properties baked into the lan-

guage, and may benefit from knowledge of user-defined

disciplines. This may ultimately resemble liquid types [21],

where the programmer can programmatically specify invari-

ants which are statically checked.

5 Ongoing Work
Our work is embodied in a new compile-time analysis tool

for statically checking the type-correctness of C code that

uses pointer casts.
2
The tool runs on unmodified source

code, and requires no additional programmer annotations.

It instruments the program to represent and check types

explicitly, slices the program on those checks, yielding a

smaller (abstracted) program which is then analyzed with a

symbolic execution engine.

This approach raises at least three key research questions:

whether it can recover the same checking power as conven-

tional type checking (on those programs amenable to it);

whether it adds useful additional checking power (on those

that aren’t); and whether it can be implemented efficiently

enough for frequent ‘fast-feedback’ use. The latter is espe-

cially important. Type checkers have long been designed

for fast feedback, and Distefano et al. suggest that fix rate

for issues discovered by static analysis is markedly higher if

issues are reported close to when the code was written [9].

5.1 Implementation
Our prototype uses assertion-based instrumentation similar

to that in §3, including an assert before every downcast.

These trigger type checks during symbolic execution, but

are also used by the slicer as its slicing criterion (i.e. it tries

to preserve only code that these assertions depend on).

Symbolic execution is provided by Klee. We augmented

the Klee memory abstraction to record a precise type for

each allocated memory region. The type information is gen-

erated for each allocation site by a system developed in prior

work [14, 15]. Upon new allocation of symbolic memory

2
Besides pointer casts, any other language feature that currently ‘bypasses’

static type-checking would be in scope—in C, this would include union ac-

cess, variadic function calls, memcpy() and some stores tomemory. However,

we focus on pointer casts as the most common of these.

by Klee we retrieve the type information and record it for

later reference. When a type assertion is encountered, Klee’s

built-in memory facilities are used to dereference the sym-

bolic pointer to a set of memory objects and offsets. Using

the layout information for the type of the memory region, we

can calculate the type at each offset and check the assertion

holds.

For this prototype one may think of subtyping in C as

“zero-offset containment”. More specifically, we follow the

approach of previous work [14, §5.1 and §6].

5.2 Results
Our prototype cannot yet provide comprehensive results for

our approach in general, but it supports running simple ex-

amples. These show both the strength and precision of sym-

bolic execution, and also weaknesses of using an unmodified

slicer, further motivating the domain-specific enhancements

described in §4.

Slicing. Currently we use an unmodified slicer from the

Frama-C [8] suite. We have discovered that it is capable of

identifying unrelated sections of code, but not even able to

deduce that we are only interested in addresses, not pointed-

to values. Consider this type-invariant example

1 int main() {
2 int unused = 0; / / S l i c e d
3 int* used = malloc(sizeof(int ));
4 *used = 0;
5 for (int j; / ∗ a r b i t r a r y ∗ / ) {
6 *used = *used + 5;
7 unused += j; / / S l i c e d
8 }
9 void* generic = used;
10 assert(type_at(generic) == _type_int );
11 return unused + *(( int*) generic ); / / S l i c e d
12 }

The slicer removes lines 2, 7 and 11. It correctly determined

that unused does not influence the type assertion on line

10. However it is rather obvious that all the assignments

to *used do not change its type. We hope to achieve better

result, particularly with respect to loops, once we augment

the slicing algorithm with domain specific knowledge, as

described in §4.

Symbolic Execution. Our experience has already shown

that we are able to detect errors (or their absence) even in

gnarly code. We use the same example as §4 but additionally

made the list heterogeneous, by mixing list elements of type

int and double.
1 int g() {
2 struct list *l = / ∗ p s eudo s yn t ax ∗ / [&1.5, &2];
3 int max = 0;
4 int even = 0;
5

6 while (l) {
7 int i;
8 if (even) {
9 assert(type_at(l->n) == _type_int );
10 i = *l->n;
11 } else {
12 assert(type_at(l->n) == _type_double );
13 int i = ceil (*(( double *) l->n));



TAPAS ’20, November 17, 2020, Virtual, USA Justus Adam and Stephen Kell

14 }
15 max = i > max ? i : max;
16 l = l->next;
17 even = !even;
18 }
19 return max;
20 }

This program is type-correct, because even is used to de-

termine whether we should treat the element as a pointer to

int or double. The Hindley-Milner-style invariant protocol

discussed earlier cannot accommodate such code, because

it expects homogeneity. In this example one if branch ex-

pects _type_double and the other _type_int. This leads
the slicer to pass the instrumented code unchanged to sym-

bolic execution, which reports no error.

In contrast, imagine that we forgot to !even at the end of

the loop, making the program type-incorrect. Again, the loop

is not sliced away, and we verified that symbolic execution

reports a type error in the second iteration. In the future we

plan to explore further difficult code patterns like this, and

also larger examples in general. (Currently our tool has no

support for multi-file programs; this will require build-time

propagation of additional metadata, but we are working to

add this.)

6 Related Work
Our technique is thematically related to gradual typing [24],

but is distinct: even in the case of unmodified code that is not

factored for static checking, our technique performs ahead-

of-time analysis that may find type errors, whereas gradual

typing relies on dynamic checking.

Our technique may be seen as a form of abstract inter-

pretation, albeit a peculiar one. Traditional applications of

abstract interpretation abstract the domain of program val-
ues, seek a sound overapproximation of program behaviour,

and must select an abstract domain carefully to allow this.

By contrast, our slicing-based technique abstracts over both

value domains and program structure, uses the types directly

from the program, and is prepared to tolerate underapproxi-

mation on gnarlier code.

Kahrs [13] previously applied abstract interpretation to

infer types for Milner-style polymorphic programs. Our tech-

nique takes this a step further and removed the constraint

to polymorphism. We instead check general type assertions,

allowing for dependent type style constructs as well as poten-

tially allowing checking of application-specific properties.

Our technique also shares themes with bounded model

checking [3], but differs in a key detail: our abstraction tech-

nique’s potential for slicing away program structure, espe-

cially loops, means its exploration of at least some infinite-

state programs need not be underapproximate. The spec-

trum between model-checking and abstract-interpretation

approaches has been remarked before, motivating a proposal

of configurable analysis [2]. Although our analysis is only

as configurable as its symbolic execution engine, it shares

this theme of taking a property (here type-correctness) and

finding a ‘broad spectrum’ means of checking it, reaching

diverse depth and precision trade-offs for diverse programs.

Khoo et al. [16] explored a technique for mixing symbolic

execution and type checking, although very different in form:

the programmer annotates the program blockwise to specify

whether the deeper or shallower analysis is required, and the

analysis engine handles merging of analysis results at the

boundaries. The goal is to enable better precision/efficiency

trade-offs while analysing novel properties (e.g. nullness, in

the example) and retaining soundness, at the cost of added

annotation effort. In contrast, our use of slicing focuses on

standard type-correctness properties, and is happy to forgo

soundness in exchange for zero annotation effort; we effec-

tively allow the code’s ‘sliceability’ to decide precision, and

to recover efficiency to the extent possible. The use of pro-

grammer annotation is likely complementary, e.g. similar

block-level annotations may provide a structured means of

recovering reliable soundness under our approach.

Slicing as a ‘preprocessor’ for symbolic execution is also

used by Slaby et al. [25], where error states are detected by in-

strumention that is then used as a slicing criterion. Similarly

Shoshitaishvili et al. [23] created slices from locations where

the program performs inputs to locations where privileged

information may be accessed. In both cases the slices then

pass onto symbolic execution, suggesting that slicing before

symbolic execution is a more widely applicable pattern.

7 Conclusion and Future Work
In this paper we have argued that there is value in reformu-

lating static type-checking in a more flexible form, where

gnarlier code may be accommodated and more complex dis-

ciplines do not require writing code in new languages. We

have identified a path to achieving this without requiring

modifications to existing code, by combining a deep analysis

with a cheaper program abstraction to recover performance

and precision opportunistically. We described a prototype

for checking cast safety in C, which shows that the deep anal-

ysis is powerful, but more work is required to craft a custom

slicing abstraction that can handle real coding idioms.

Recovering efficiency for symbolic execution largely de-

pends on eliminating as much of the code as possible before-

hand. To make our approach feasible in larger codebases, the

next step is to implement the slicer augmentations we de-

scribed in §4. A similar tool, described in [25], reports check

times of around 2 seconds, which makes us hopeful that we

can achieve similar. We also expect that the local reasoning

outputs of the slicer may be computable incrementally. It re-

mains to be seen whether it is possible also to incrementalise

slicing itself. Both could yield substantial improvement in

edit-compile-run performance of the tool.
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