
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Towards Scalable UDTF’s in Noria
Justus Adam

Technische Universität Dresden
Chair for Compiler Construction

Dresden, Germany
me@justus.science

ABSTRACT
User De�ned Functions are an important and powerful extension
point for database queries. Systems using incremental materialized
views largely do not support UDF’s because they cannot easily be
incrementalized.

In this work we design single-tuple UDF and UDA interfaces for
Noria, a state-of-the art data�ow system with incremental materi-
alized views. We also add limited support for User De�ned Table
Functions (UDTF), by compiling them to a query fragment with
single-tuple and UDA operators. We show our UDTF’s scale using
one previously criticized in [6] for performing badly in SQL.
ACM Reference Format:
Justus Adam. 2019. Towards Scalable UDTF’s in Noria. In Proceedings of
ACM Conference (Conference’17). ACM, New York, NY, USA, 3 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Noria [7] is a novel database optimized for web applications. These
heavily favor reads over writes. Noria pre-computes results for
queries to speed up reads and applies writes incrementally. This
technique is called a materialized view [9, 14], speeding up reads
signi�cantly at the expense of immediate consistency for writes.

Noria achieves further performance using parallelism. It is ca-
pable of leveraging multiple cores on a single machine, as well as
using a cluster of machines. This is well suited for web applications,
where requests are often distributed among several machines.

Views in the Noria database are currently de�ned using a SQL
dialect. There is no support for UDF’s yet. This limits which kinds
of processing tasks can be done, as they have to be covered, in
full, by SQL. Common tasks such as decoding or computing the
distribution over a series of values can thus not be expressed.

In this work we try to remedy this situation. We add facilities
for two basic kinds of UDF. Single-tuple UDF’s and User De�ned
Aggregations (UDA). Single tuple UDF’s can, for instance, express
decoding tasks or unit conversions. UDA’s cover, for instance, a
distribution or variance calculation. In this work we propose a
scheme for de�ning incremental single-tuple UDF’s and UDA’s.
This is necessary for use in a materialized view, as results need to
be continuously updated. We further integrate the state needed

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

for a UDA into Norias materialization. This allows the engine to
distribute the state along with the computations across cores and
machines.

fn main(clicks: RowStream <i32 , i23 , i32 >)

-> GroupedRows <i32 , i32 > {

let click_streams = group_by(0, clicks);

for (uid , group_stream) in click_streams {

let sequences = IntervalSequence ::new();

for (_, category , timestamp) in group_stream {

let time = deref(timestamp);

let cat = deref(category);

if eq(cat , 1) {

sequences.open(time)

} else if eq(cat , 2) {

sequences.close(time)

} else {

sequences.insert(time)

}

};

sequences.compute_average ()

}

}

Figure 1: Clickstream analysis UDTF in Ohua

We also go one step further and add support for a limited form
of User De�ned Table Functions (UDTF). UDTF’s pose a signi�cant
risk to performance. To the engine they are black boxes, preventing
optimization and parallelization.We apply insights from the domain
of implicit parallel programming [3–5]. We compile the UDTA to
a query fragment containing native database operators as well as
automatically generated UDF’s and UDA’s. These fragments give
the engine a more �ne grained view of the UDTF. Using this we
implement a clickstream analysis UDTF (Figure 1) adapted from [6].
Friedman et al. showed this query is di�cult to write in pure SQL
and performs poorly. Our UDTF version is simpler to read and write
and the experiments show the engine is able to parallelize it.

2 RELATEDWORK
Traditional materialized views [9, 12] recompute the entire query,
which requires no changes to the UDF integration. Incrementally
maintainedmaterialized views [10, 14, 15] aremore di�cult because
UDF’s also need to be incremental.

DBToaster [1] does support UDF’s, but only single-tuple ones,
which are trivial to incrementalize. Mohapatra and Genesereth [13]
support User De�ned Aggregates only in so far as they have to
also be de�ned in the query language Datalog, o�ering no e�ective
integration for foreign code. Oracle [11] developed interfaces for
incremental UDA’s supporting foreign code. Our approach builds

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Justus Adam

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

on a similar interface, but also automates part of incrementalizing
the UDA.

To the best of our knowledge there is no proposal yet for UDTF’s
in incremental materialized views, especially scalable ones.

There are separate approaches to scalable UDTF’s using MapRe-
duce [6] and annotations [8]. Our approach uses a more general
language than MapReduce [2] and is orthogonal to [8].

3 APPROACH
We incrementalize the UDF’s according to their type. In general
incremental operators compute over deltas. A delta pairs a value
with a sign i.e. (x,+) is an insert of value x , (x,−) a delete.
Single tuple UDF’s are incrementalized by propagating the sign.

Let the UDF be f , then the incremental operator f ′ behaves
as follows:

f ′((x,+)) = (f (x),+)

f ′((x,−)) = (f (x),−)

UDA’s always have a state keeping track of the aggregate. To in-
crementalize we only need to incrementalize the state. To
do this we require that all modi�cations to this state are
reversible. The input value is used to compute a set of modi-
�cations to trigger. If the sign was positive the modi�cations
are applied, otherwise we revert them instead. Finally the
result is recomputed and an update issued downstream.With
this not the entire UDA must be incremental, only the state.

UDTF’s . We are most interested in stateful, procedural computa-
tions because SQL cannot express these. We generate single-
tuple UDF’s and UDA’s for parts of the program and tie them
together with SQL operators to an query fragment.

We need to faithfully recreate the procedural semantics in the
query fragment. For this we use the parallelizing language and
compiler Ohua [4]. Calls to external functions compile to UDF and
UDA operators. A data�ow graph of the UDTF is created, the nodes
of which are the generated operators. This Ohua speci�c graph is
translated into MIR an intermediate representation for queries in
Noria. When the UDTF is called, this MIR fragment is spliced into
the query. Figure 2 shows an overview of the compile pipeline.

transform

link

UTDF Ohua
Data�ow
Graph

MIR

Custom
Operators Noria

SQL Query

Figure 2: Compiler Pipeline

The two most important challenges for the compilation process
are the representation of state and control �ow.

State. is an important feature of our UDTF’s, as it is absent in
SQL and necessary for certain e�cient algorithms [6]. Some of the
operators that compute query results have private state, but there
is no state sharing between operators. This is deliberate, because

it requires synchronization and reduces parallelism. We make all
state local by fusing parts of the UDTF such that we can generate
a single operator per mutable state. This way the state is private
to the operator and mutation is safe. The restrictions this imposes
on how state can be shared are omitted here for brevity. We pair
UDF state directly with the materialization, allowing the engine
to distribute it. It also enables it to garbage-collect unused state,
which Noria dose to reduce memory pressure.

Control �ow. is supported in our source language as iteration
(for) and conditional (if). Conditional execution can be repre-
sented as Noria data�ow using only the native operators Filter
and Join and is omitted here for brevity.

Iteration is di�erent, because the type of data �owing between
backend operators is restricted to database tuples 1. We therefore
stream sequences like arrays and lists element-wise. Each item is
tagged with a scope key that describes its position in the sequence.
For instance the group_by(grp_cols, table) function tags each
row with the current value of its grp_cols. Here the tag signi�es
the group it belongs to.

We use these scope keys to implement state scoping. This occurs
when a state is instantiated in a for loop (Figure 1). The operator
using the state must instantiate a new state for each iteration of the
loop to satisfy the scope. When it processes a tuple, it selects the
corresponding state from an internal map based on the scope key
of the tuple. This lets us recreate procedural semantics and scope
using runtime tagging.

4 RESULTS AND CONCLUSION

●

●

●

●
●

● ●
●

0e+00

1e+06

2e+06

3e+06

4e+06

2 4 6 8
Number of parallel shards

T
hr

ou
gh

pu
t (

pe
r

se
co

nd
)

Figure 3: Scaling of the clickstream analysis UDTF over
sharded data

We implement the e�cient version of a clickstream analysis
query from [6]. We show that the implementation e�ort is low
using our approach. The generated query fragment can be called
from SQL like typical UDF’s. It parallelizes with Norias sharding
capabilities, shown in Figure 3.

Our approach can express procedural UDF’s as database query
fragments. It allows for the use of state for e�cient queries and
respects control �ow scope. These UDTF’s are capable of leveraging
parallelizing optimizations. Our approach could be supplemented
with the ideas put forward in [8], further expanding the optimiza-
tion potential.
1Heterogeneous arrays of SQL base types.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Towards Scalable UDTF’s in Noria Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

REFERENCES
[1] Yanif Ahmad, Oliver Kennedy, Christoph Koch, and Milos Nikolic. 2012.

DBToaster: Higher-order Delta Processing for Dynamic, Frequently Fresh Views.
Proc. VLDB Endow. 5, 10 (June 2012), 968–979. https://doi.org/10.14778/2336664.
2336670

[2] Je�rey Dean and Sanjay Ghemawat. 2008. MapReduce: Simpli�ed Data Processing
on Large Clusters. Commun. ACM 51, 1 (jan 2008), 107–113. https://doi.org/10.
1145/1327452.1327492

[3] Sebastian Ertel, Justus Adam, Norman A. Rink, Andrés Goens, and Jeronimo
Castrillon. 2019. STCLang: State Thread Composition As a Foundation for
Monadic Data�ow Parallelism. In Proceedings of the 12th ACM SIGPLAN Interna-
tional Symposium on Haskell (Haskell 2019). ACM, New York, NY, USA, 146–161.
https://doi.org/10.1145/3331545.3342600

[4] Sebastian Ertel, Christof Fetzer, and Pascal Felber. 2015. Ohua: Implicit Data�ow
Programming for Concurrent Systems. In Proceedings of the Principles and Prac-
tices of Programming on The Java Platform (PPPJ ’15). ACM, New York, NY, USA,
51–64. https://doi.org/10.1145/2807426.2807431

[5] Sebastian Ertel, Andrés Goens, Justus Adam, and Jeronimo Castrillon. 2018.
Compiling for Concise Code and E�cient I/O. In Proceedings of the 27th Interna-
tional Conference on Compiler Construction (CC 2018). ACM, New York, NY, USA,
104–115. https://doi.org/10.1145/3178372.3179505

[6] Eric Friedman, Peter Pawlowski, and John Cieslewicz. 2009. SQL/MapReduce:
A Practical Approach to Self-describing, Polymorphic, and Parallelizable User-
de�ned Functions. Proc. VLDB Endow. 2, 2 (aug 2009), 1402–1413. https://doi.
org/10.14778/1687553.1687567

[7] Jon Gjengset, Malte Schwarzkopf, Jonathan Behrens, Lara Timbó Araújo, Mar-
tin Ek, Eddie Kohler, M. Frans Kaashoek, and Robert Morris. 2018. Noria:
dynamic, partially-stateful data-�ow for high-performance web applications.
In 13th USENIX Symposium on Operating Systems Design and Implementation

(OSDI 18). USENIX Association, Carlsbad, CA, 213–231. https://www.usenix.
org/conference/osdi18/presentation/gjengset

[8] Philipp Große, Norman May, and Wolfgang Lehner. 2014. A Study of Partitioning
and Parallel UDF Execution with the SAP HANA Database. In Proceedings of the
26th International Conference on Scienti�c and Statistical Database Management
(SSDBM ’14). ACM, New York, NY, USA, Article 36, 4 pages. https://doi.org/10.
1145/2618243.2618274

[9] H. Gupta and I. S. Mumick. 2005. Selection of views to materialize in a data
warehouse. IEEE Transactions on Knowledge and Data Engineering 17, 1 (Jan
2005), 24–43. https://doi.org/10.1109/TKDE.2005.16

[10] Himanshu Gupta and Inderpal Singh Mumick. 2006. Incremental maintenance of
aggregate and outerjoin expressions. Information Systems 31, 6 (2006), 435 – 464.
https://doi.org/10.1016/j.is.2004.11.011

[11] Ying Hu, Seema Sundara, and Jagannathan Srinivasan. 2010. Materialized views
with user-de�ned aggregates.

[12] Ki Yong Lee andMyoung Ho Kim. 2005. Optimizing the Incremental Maintenance
of Multiple Join Views. In Proceedings of the 8th ACM International Workshop on
Data Warehousing and OLAP (DOLAP ’05). ACM, New York, NY, USA, 107–113.
https://doi.org/10.1145/1097002.1097021

[13] Abhijeet Mohapatra and Michael Genesereth. 2014. Incremental maintenance of
aggregate views. In International Symposium on Foundations of Information and
Knowledge Systems. Springer, 399–414.

[14] Jingren Zhou, Per-Ake Larson, and Hicham G. Elmongui. 2007. Lazy Maintenance
of Materialized Views. In Proceedings of the 33rd International Conference on Very
Large Data Bases (VLDB ’07). VLDB Endowment, 231–242. http://dl.acm.org/
citation.cfm?id=1325851.1325881

[15] Yue Zhuge, Héctor García-Molina, Joachim Hammer, and Jennifer Widom. 1995.
View Maintenance in a Warehousing Environment. In Proceedings of the 1995
ACM SIGMOD International Conference on Management of Data (SIGMOD ’95).
ACM, New York, NY, USA, 316–327. https://doi.org/10.1145/223784.223848

3

https://doi.org/10.14778/2336664.2336670
https://doi.org/10.14778/2336664.2336670
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/3331545.3342600
https://doi.org/10.1145/2807426.2807431
https://doi.org/10.1145/3178372.3179505
https://doi.org/10.14778/1687553.1687567
https://doi.org/10.14778/1687553.1687567
https://www.usenix.org/conference/osdi18/presentation/gjengset
https://www.usenix.org/conference/osdi18/presentation/gjengset
https://doi.org/10.1145/2618243.2618274
https://doi.org/10.1145/2618243.2618274
https://doi.org/10.1109/TKDE.2005.16
https://doi.org/10.1016/j.is.2004.11.011
https://doi.org/10.1145/1097002.1097021
http://dl.acm.org/citation.cfm?id=1325851.1325881
http://dl.acm.org/citation.cfm?id=1325851.1325881
https://doi.org/10.1145/223784.223848

	Abstract
	1 Introduction
	2 Related Work
	3 Approach
	4 Results and Conclusion
	References

